USER REQUIREMENTS SPECIFICATION. (URS)



Definition: User Requirements Specification (URS).

To create a User Requirements Specification that is GMP compliant; the requirements of the end-user must be set out as a sequence of events. Each event must be clearly defined, testable and include a pre-approved acceptance criteria.  (This gives you Level 1 of your URS).


User Requirements Specification Scope.

User requirements specification used to set up capsule assembly line.

Learn how to prepare a User Requirements Specification (URS) that will streamline your whole validation task. No matter whether the system is purely mechanical, or a mix of electro-mechanical, or solely a software program, the successful compilation and execution of the Installation Qualification (IQ) (for installation), Operational Qualification (OQ) (for functionality) and the Performance / Product Qualification (PQ) (for operability), is dependent on an URS containing clear, concise and testable requirements.

Once the end-user requirement specification or URS as it is commonly called; is documented, agreed and approved they form the basic URS Level-1 document. The engineers (or vendor) can then commence the preliminary design to establish exactly what functions are required for each of the items specified in the user requirements specification, the end user has listed. Once this functionality is documented and approved it forms the URS Level-2 document. This is the final level of the URS unless software is used.

If software is to be used, the URS Level-2 document, is passed to the code writers. As the code is written, lines, or groups of lines, of code must be attributed to the individual functions that necessitate their presence. The completion of this task results in the completion of the document.

Developing the URS to this level is unique in most industries, but is, standard practice in strictly regulated industries, as it is a major building block in the creation of quality software. The URS Level-3 document, contains all the traceability which is deemed mandatory for software assessed to be critical to product quality, in the pharmaceutical regulated industries.


Full life cycle function testing.

User requirements specification for full life cycle capsule assembly.

Bringing these needs and tasks together in a manner which will verify design fitness for purpose, has traditionally been a tedious and laborious labour. It involved trawling the VP and URS and cross- referencing to the Functional Specification and the Design Specification and the associated Test Specifications, sometimes, with only limited success. The design of our document is unique, it requires the URS to be an active document up to completion of the Design Qualification (DQ). The DQ will be executed against the three level URS, and verify that the code (if there is any) specified in URS Level-3, will deliver the functionality detailed in URS Level-2, which in turn will deliver the operability that the end user specified in URS Level-1.

This document consists of a generic template which uses an attached SOP to allow you to quickly auto-populate the template. It then takes you page by page through the template allowing you to develop the template into your own bespoke company URS. Just ask about validation time that is saved using this simple and quick to produce a quality URS.


User Requirements Specification (URS) Defined.

User requirements specification image for capsule assembly line.

The URS is originated by the end user extrapolating requirements directly from the production processes. These high end user requirements are then passed to engineering who are tasked with turning them into a complete procurement package. A package that will include all aspects of purchasing, installing and operating the specified system. Further to these direct requirements there are also a multitude of indirect requirements, such as; documentation, manpower, training and test equipment that must be fully researched, investigated and specified. The URS must be written in a format that allows each of these requirement to be verified as being “fully satisfied” or not.

This schematic allows faults in this URS document to be reported.

PLEASE CLICK HERE AND GO TO OUR STORE.


User Requirements Specification Justification (URS)

They must be comprehensive. Each and every requirement relating to product safety, identity, strength, purity, and quality must be identified. Hence, Quality Assurance (QA) must have a significant role in reviewing and approving the final list of requirements, and must be an approver of changes to any requirement that can affect the above product or process attributes (e.g., cGMP’s).

Given a comprehensive User Requirements Specification that has been approved by QA and is under project change management, the Design Qualification (DQ) process then can be reduced to two key objectives:

  • Documented verification that the overall design appears to address, by some means, each and every requirement; in the URS, affecting the product and performance of the manufacturing process (or, in the case of unknown product or multi-product manufacturing facility, the required equipment/ system performance capabilities).
  • Identification (and documentation) of the critical individual physical components, attributes, and operational features that directly support meeting each requirement.

User Requirements Specification Scope.

User Requirements Specification (URS) Scope includes but is not limited to;

  • Level-1, full details of end user operability.
  • Level-2, full details of functionality.
  • Level-3, software functionality interface.
  • A full description of the required system performance.
  • Performance criteria, critical parameters and operating range.
  • Cleaning and maintenance requirements.
  • Appropriate regulatory requirements.
  • Documentation requirements.
  • Training requirements.
  • All none industry standard testing that may be required.



URS and the Software Life Cycle.

This schematic diagram shows the inter-relationship of validation documents that must be followed in a user requirements specification.

URS in the Qualification Process.

This schematic shows the basic document inter-relationships.

USER REQUIREMENTS SPECIFICATION.


For Your Security We are Now TLS 1.2 Compliant


PayPal Acceptance Mark

SEARCH FOR ANY DOCUMENT.


When assistance is required; please contact us TOLLFREE at 877-462-4048...If out of office hours please call "Whatsapp" 0044 7565 854826 and talk to Alex.

Equipment combined IQ/OQ/PQ Protocol.   $159.00

This combination protocol has been produced in response to several hundred reader suggestions we received in our ‘Suggestions Section’. It has been carefully designed to make it the preferred choice for Process and Laboratory stand alone equipment. It is interactive, easy to use and suitable for all mixes of equipment with and without software.
The IQ section establishes documented verification that key aspects of the equipment adhere to approved design intentions and that the recommendations of the manufacturer have been suitably considered. The OQ section establishes that there is documented verification that the installed system functions as specified and that there is sufficient documentary evidence to demonstrate this. The PQ section gives documented verification that the equipment performance in its normal operating environment is consistently exactly as specified in the URS.

Quantity

12000002_VrrP_Equipment_iss-4. -- $298.00

This Validation, Risk & Requirements Plan (VrrP) is one document designed specifically to replace three. The contents of the three original documents were completely revised and edited into a more compact and interactive format.  This new format will make a very significant difference to the man hours required to produce and execute these documents.  There will also be a very noticeable reduction in the time required for the reviewing and approving tasks.  This new document titled the VrrP replaces the VP, VRA & URS and now compliments our equally new 4Q Protocol, which integrates the DQ/IQ/OQ/PQ into one document. 
This is an essential step forward for companies seeking to reduce validation costs without infringing regulatory standards.

Quantity

12000006_4Q_Equip_iss-4. -- $298.00

4Q Equipment Validation Protocol (4Q-Equip) has been designed specifically to replace four standard protocols.   By taking the contents of the four protocol and carefully weaving them into one notably easy to use protocol, we have made a significant advance in the task of streamlining validation documentation by reducing protocol numbers by close to 75%.  The new bang up to date 4Q protocol replaces the DQ, IQ, OQ & PQ and now compliments our equally new VrrP Protocol.  By integrating the old style DQ/IQ/OQ/PQ into one 4Q document there will be enormous savings in man hours in the authoring, reviewing, updating and approving tasks.
For everyone's convenience, it is still written in word.

Quantity

Design Qualification (Issue 5) -- $115.00

The Standard Operating Procedure attached to this generic design qualification protocol, will chapter by chapter, take you through the task of raising a fully detailed document. The main body is split into fourteen tables, each one probing the design requirements and standards for the individual requirement. Safety and security along with user operability are very detailed. The document will lead you through all these design aspects allowing you to delete some you feel are not important to your equipment. It is an easy document to use and will ensure that you’re DQ’s are relevant, up to date and easy to execute. Practically all the requirements are in table form. Allowing fast and clearly presented results to be obtained.

Quantity

Performance Qualification (P1Q) (Issue 5.) -- $89.00

The Performance Qualification is the last of the qualifying tests that equipment and processes are subjected to, prior to the actual first product run. It maybe that there are some steps in the process that can only be verified by actually running them (quick freezing and sublimation, to mention only two) or it somtimes is the fact that the product is a very expensive product, and can not be wasted. So no one wants to run the process with product, until they are completely certain there will be minimal waste.

Quantity